

Olympiades académiques de mathématiques

Académie de Bordeaux

Mercredi 18 mars 2015 de 8 heures à 12 heures

Les objets calculatrices sont autorisés, à l'exclusion de tout autre appareil électronique.

Il est conseillé aux candidats qui ne pourraient formuler une réponse complète à une question d'exposer le bilan des initiatives qu'ils ont pu prendre.

L'épreuve comporte quatre exercices, tous à traiter dans le temps imparti.

- Les élèves des séries S, STI2D, STL traiteront les exercices 1, 2, 3S et 4
- Les élèves des autres séries traiteront les exercices 1, 2, 3L et 4

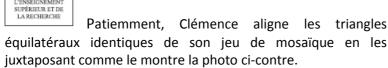
Il est conseillé de ne pas en privilégier trop fortement un sur les autres.

Durée de la composition : 4 heures

Sauf cas de force majeure, aucun candidat n'est autorisé à quitter définitivement la salle de composition moins de 2 heures après le début. Un candidat qui quitterait la salle au bout de trois heures ou moins doit rendre sa copie et son exemplaire du sujet.

Exercice numéro 1 (proposé par le jury national)

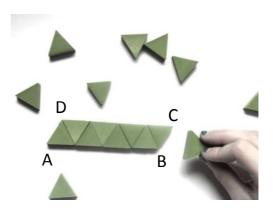
Défi entre sœurs



Sa sœur, Léa, qui est en première et toujours en quête de quelques calculs à effectuer, s'amuse à trouver la **valeur exacte** des longueurs des diagonales des quadrilatères obtenus.

Chaque triangle équilatéral a pour côté 1. On note :

- ABCD un quadrilatère construit par Clémence ;
- L = AC la longueur de la diagonale [AC];
- l = BD la longueur de la diagonale [BD].

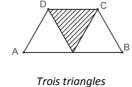


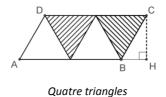
Partie A

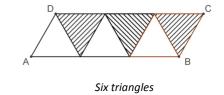
NATIONALE, D

- 1. Calculer la longueur d'une hauteur d'un triangle équilatéral de côté 1.
- **2.** Calculer les longueurs l et L pour les cas suivants :

Deux triangles







Partie B

Clémence continue à ajouter des triangles et défie sa sœur de poursuivre ses calculs de diagonales. Léa note n le nombre de triangles équilatéraux alignés (n est un entier supérieur ou égal à 2) et se met à chercher :

- **1.** Lorsque le nombre n de triangles est **pair**, montrer que la longueur de la diagonale la plus grande est égale à $L=\sqrt{p^2+p+1}$, où $p=\frac{n}{2}$.
- 2. Si Clémence ajoute un triangle supplémentaire au cas précédent, que deviennent les longueurs l et L?
- **3.** Clémence a aligné 56 triangles. Déterminer les longueurs l et L calculées par Léa.

Partie C

Observant tous les calculs de longueur de diagonales effectués, Léa conjecture deux propriétés :

- $\mathbf{1}^{re}$ propriété : « Pour tout nombre n de triangles juxtaposés, L est la racine carrée d'un nombre impair »
- $\mathbf{2}^e$ propriété : « Pour tout nombre n de triangles juxtaposés, L est la racine carrée d'un nombre premier »

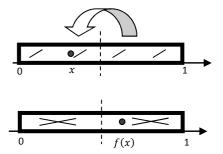
On rappelle qu'un nombre premier est un entier naturel divisible seulement par 1 et lui-même ; par exemple 2, 11, 29 sont des nombres premiers et 1, 8, 33 ne le sont pas.

- 1. Valider ou invalider chacune de ces propriétés.
- **2.** Peut-on affirmer que la racine carrée de tout nombre premier est la longueur possible d'une diagonale d'un quadrilatère ABCD du type ci-dessus ?
- **3.** Pourquoi n'est-il pas possible d'obtenir une diagonale de longueur $\sqrt{2\ 015}$?
- **4.** Clémence a construit un quadrilatère dont une diagonale mesure $\sqrt{1\,015\,057}$. Combien de triangles a-t-elle utilisés ? Donner toutes les réponses possibles.
- **5.** Clémence dit à sa sœur : « sur les grands quadrilatères, à chaque fois qu'on ajoute deux triangles, la diagonale augmente d'environ 1 ». Le constatez-vous aussi ? (détailler la démarche). Si oui, le démontrer.

Exercice numéro 2 (proposé par le jury national)

On est les rois!

Le boulanger place une fève, replie la pâte (qu'il a, ici, préalablement striée) sur elle-même, et l'étale dans le sens de la longueur : celle-ci s'étire jusqu'à retrouver ses dimensions initiales. Cette transformation, que l'on peut répéter, a donné lieu à quelques études mathématiques, dont cet exercice s'inspire.



Partie A - La transformation du boulanger

On considère la fonction f définie sur [0,1] par :

$$f(x) = 2x \text{ si } x \le \frac{1}{2} \text{ et } f(x) = 2(1-x) \text{ sinon.}$$

- **1.** Montrer que l'image par f d'un élément de [0, 1] appartient à [0, 1].
- **2.** Justifier pourquoi cette fonction f modélise le déplacement de la fève.

Partie B - Parcours d'une fève : cycles et cible

Les images successives par f d'un élément x de [0,1] sont notées $x_1 = f(x)$, $x_2 = f(x_1)$, $x_3 = f(x_2)$ etc. Elles correspondent aux positions successives de la fève initialement placée à l'abscisse x.

- **1.** Quelles sont les 9 positions qui suivent l'abscisse $\frac{1}{3}$? l'abscisse 0, 33 ? Commenter.
- **2.** Est-il possible qu'une fève, placée à l'abscisse x, revienne à sa position de départ en un seul coup ? En deux coups (mais pas en un) ? En trois coups (mais ni en un ni en deux) ? Préciser à chaque fois toutes les valeurs de x pouvant répondre à la question.
- **3.** Quand une fève placée à l'abscisse x vient, après un nombre fini d'étapes du processus, à occuper l'abscisse nulle, on dit que « x atteint sa cible ». Donner un exemple où x atteint sa cible, et un autre où x ne l'atteint pas.
- **4.** Le nombre $\frac{2015}{2^{2015}}$ atteindra-t-il la cible ?
- **5.** Déterminer tous les nombres de [0,1] atteignant leur cible.

Partie C – Étude d'un algorithme.

- **1.** Soit un nombre x dont on suppose qu'il atteint la cible. Modifier l'algorithme proposé en **Annexe**, page 4, afin qu'il affiche, dans ce cas, le nombre d'étapes nécessaires pour rejoindre le réel 0 (on recopiera le nouveau code sur sa copie).
- **2.** D'après les question **B.5**. ou même **B.2.**, le nombre $\frac{1}{9}$ n'atteint pas sa cible. Comment devrait se comporter l'algorithme après avoir saisi $x=\frac{1}{9}$ en entrée ? Quand on le programme sur une machine de type PC ou calculette, toujours avec $x=\frac{1}{9}$ en initialisation, puis qu'on l'exécute, il affiche cependant en sortie obtenir x=0 au bout d'une cinquantaine d'itérations. Avancer une explication.

Annexe.

```
Variables x est un élément de [0,1]
Début

Saisir le nombre x compris entre 0 et 1
Tant que x \neq 0 faire

Si x \leq \frac{1}{2} alors
x prend la valeur 2x
Sinon
x prend la valeur 2(1-x)
Fin tant que
```

Eduti - Egilii - Patentii REFERLIQUE PATENTI MINISTÈRE DE L'ÉDUCATION NATIONALE, DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE

Exercice numéro 3S (à traiter par les élèves des séries S, STI2D, STL) (proposé par le jury académique)

Prendre la tangente

ABCD est un carré de côté 1, (Q) est un quart de cercle de centre C et passant par B et D.

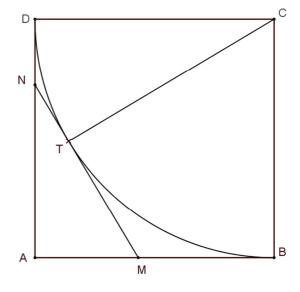
M est un point variable du segment [AB] distinct de A et B. Par le point M on trace la tangente à (Q) qui coupe le côté [AD] en N. Le point de contact de la tangente avec (Q) est nommé T.

On pose
$$AM = x$$
 et $AN = y$ avec $0 < x < 1$ et $0 < y < 1$.

1. a. Démontrer les deux expressions de MN:

$$\begin{cases} MN = \sqrt{x^2 + y^2} \\ MN = 2 - x - y \end{cases}$$

b. En déduire que $y = 2 + \frac{2}{x-2}$.



- **2.** En déduire la valeur de x pour laquelle la distance MN est minimale. Quelle est alors cette distance ?
- **3.** En déduire la valeur de x pour laquelle l'aire du triangle AMN est maximale. Quelle est alors cette aire ?

Exercice numéro 3L (à traiter par les élèves des séries L, ES, STMG) (proposé par le jury académique)

Décomposition en sommes

Soit k un entier naturel supérieur ou égal à 2. On dira qu'entier N est k-décomposable s'il peut s'écrire sous la forme d'une somme de k entiers naturels impairs consécutifs.

Par exemple: 3+5+7+9 = 24 est la somme de 4 entiers impairs consécutifs donc 24 est 4-décomposable.

Partie A

1. Donner les cinq plus petits entiers naturels qui sont 2-décomposables.

Un entier 2-décomposable peut-il être impair ? Justifier.

Déterminer tous les nombres 2-décomposables.

2. On note S la somme de 3 entiers impairs consécutifs et on désigne par x le plus petit d'entre eux.

Exprimer S en fonction de x.

2015 est-il 3-décomposable ? 1803 est-il 3-décomposable ? Justifier.

Partie B

On rappelle que pour tout entier naturel non nul n,

$$1 + 2 + 3 + \dots + (n - 1) = \frac{(n - 1)n}{2}$$

Soit k un entier naturel supérieur ou égal à 2. On désigne par N la somme de k entiers impairs consécutifs et par x le plus petit de ces entiers.

- 1. Démontrer que N = k(x + k 1).
- 2. En déduire que si k est pair alors tout entier k-décomposable est un multiple de 4.
- 3. Démontrer que 2015 est 13-décomposable ?
- 4. Existe-t-il un entier k strictement supérieur à 13 tel que 2015 soit k-décomposable ? Justifier.

Exercice numéro 4 (proposé par le jury académique)

Ensembles Pythagoriciens

Un sous ensemble ℓ de points du plan est dit pythagoricien s'il vérifie la propriété suivante :

Quelle que soit la façon dont on colorie les points de ℓ avec deux couleurs différentes, par exemple rouge et bleu, il existe au moins un triangle rectangle dont les sommets appartiennent à ℓ et qui soient de la même couleur.

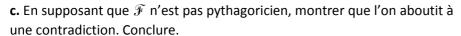
On en déduit qu'un ensemble ℓ n'est pas pythagoricien s'il est possible de le colorier avec seulement deux couleurs sans qu'aucun triplet de points de ℓ formant les sommets d'un triangle rectangle ne soit de la même couleur. Un ensemble ne permettant de former aucun triangle rectangle n'est pas pythagoricien.

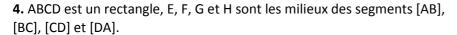
- 1. Montrer que les quatre sommets d'un carré ne forment pas un ensemble pythagoricien.
- 2. L'ensemble des points d'un cercle est-il pythagoricien ?
- **3.** On se propose de montrer que l'ensemble \mathscr{F} formé par les points du contour d'un triangle équilatéral ABC est pythagoricien.
- a. Soit K, L et M les points tels que

$$\overrightarrow{AL} = \frac{1}{3}\overrightarrow{AC}$$
, $\overrightarrow{BM} = \frac{1}{3}\overrightarrow{BA}$ et $\overrightarrow{CK} = \frac{1}{3}\overrightarrow{CB}$

Montrer que les triangles BKM, AML et CLK sont rectangles respectivement en M, L et K.

b. Justifier que deux au moins des points K, L, M sont de la même couleur. On supposera par la suite que cette couleur est rouge et que K et L sont rouges.





- **a.** Montrer que l'ensemble formé par ces 8 points est pythagoricien. On pourra supposer que A est rouge.
- **b.** En déduire que l'ensemble formé par les points du contour d'un rectangle est pythagoricien.

