4 points sont attribués pour l'orthographe, le soin, les notations et la rédaction.

L'utilisation de la calculatrice est autorisée.

ACTIVITES NUMERIQUES

(18 points)

Tous les calculs doivent être rédigés avec soin, en donnant toutes les étapes.

Tout résultat non justifié sera considéré comme nul.

1) Calculer les expressions suivantes : (2 points)

$$A = 2.4 - (11 - 13) \times (-1.2 - 4.8)$$

$$B = -5 \times (-4 + 3) + 7 \times (2 - 7)$$

2) Calculer et donner le résultat sous la forme d'une fraction irréductible :

$$C = \left(\frac{5}{18} - \frac{2}{9}\right) \times \frac{27}{5}$$

$$E = \frac{-7}{18} \times \frac{3}{-14} \times (-9)$$

$$G = \frac{5 - \frac{1}{2}}{\frac{3}{5} + \frac{3}{4}}$$

$$D = \frac{8}{15} - \frac{27}{5} \times \frac{2}{9}$$

$$F = \frac{15}{4} \div \frac{-3}{12}$$

3) Ecrire sous la forme d'une seule puissance, puis donner le résultat sous la forme d'un entier ou d'une fraction irréductible : (4.5 points)

$$H = 10^5 \times 10^{-3}$$

$$J = \frac{5^6}{5^4}$$

$$I = 10^3 \times 10^{-5}$$

$$=\frac{(-5)^5}{(-5)^3} \qquad L$$

$$=\frac{(-7)^2}{(-7)^3}$$

$$=\frac{(-7)^2}{(-7)^3} \qquad M = ((-2)^3)^2$$

4) Calculer et donner le résultat sous la forme d'un entier ou d'une fraction irréductible : (3 points)

$$N = (-3)^2 - 6 \times 2^2$$

$$P = \frac{9 \times 10^5}{4 \times 10^3}$$

$$Q = \left(-\frac{3}{5}\right)^3 \times \left(\frac{5}{3}\right)^5$$

5) Donner l'écriture scientifique de :

(2 points)

$$R = 6,25 \times 10^8 \times 4 \times 10^5$$

$$S = \frac{62.5 \times 10^3}{4 \times 10^7}$$

6) Problème:

(1 point)

Un viticulteur fait vieillir son vin dans des barriques avant de le mettre en bouteilles.

Une barrique est un tonneau qui contient 225 litres de vin.

Combien de bouteilles de $\frac{3}{4}$ L peut-on remplir avec le contenu d'une barrique ?

Collège de Carbon-Blanc		Devoir commun de mathématiques 4ème	
28 mars 2 011	Durée 1 heure 30 min		Page 1/2

ACTIVITES GEOMETRIQUES

(18 points)

Toutes les figures sont à faire en vraie grandeur et avec soin.

Exercice 1 (5 points)

1) a/ Construire un triangle ABC tei que AB = 4,2 cm, BC = 7 cm et AC = 5,6 c	cm. (<i>0,5 pt</i>)
b/ Démontrer que ABC est un triangle rectangle en A.	(2 pts)

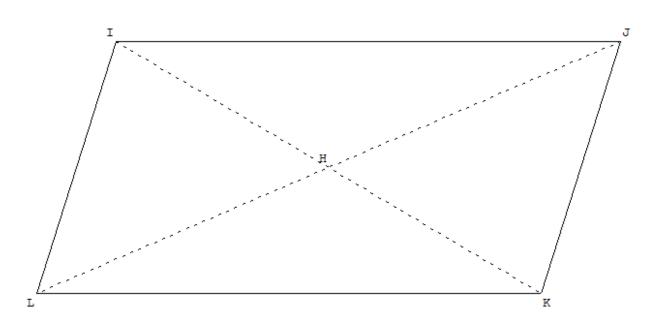
2) a/ Sur la figure précédente, Tracer le cercle
$$(\mathcal{C}_1)$$
 de diamètre [BC]. (0,5 pt)
b/ Démontrer que A appartient au cercle (\mathcal{C}_1) . (2 pts)

Exercice 2 (6 points)

1) Construire un cercle (\mathcal{C}_2) de rayon 4 cm. Tracer un diamètre [EF] de (\mathcal{C}_2).	(0,5 pt)
Construire un point G de (\mathcal{C}_2) tel que FG = 6 cm.	(0,5 pt)

3) Calculer en justifiant :

b/ La longueur GE (valeur exacte puis arrondie au dixième de centimètre). (2,5 pts)


Exercice 3 (7 points)

On complètera la figure ci-dessous au fur et à mesure du problème.

1)	IIKI est un narallélogramme	اا ا +م (۱۱۱] se coupent en H. Démontrer que H est le milieu de [IK].	(2 nts)
	IJNL est un paranelogrannile.	IIIVI EL IJL	i se coupeiit eii n. Demontiei que n'est le milleu de jikj.	(Z DLS)

b/ Démontrer que N est le milieu de [KL]. (Indication : se placer dans le triangle IKL.) (2 pts)

3) Placer M le milieu de [JK]. Démontrer que (HM) // (IJ). (2 pts)

Collège de Carbon-Blanc		Devoir commun de mathématiques 4ème	
28 mars 2 011	Durée 1 heure 30 min		Page 2/2

ACTIVITES NUMERIQUES correction

1) Calculer les expressions suivantes : (2 points)

$A = 2,4 - (11 - 13) \times (-1,2 - 4,8)$	$B = -5 \times (-4 + 3) + 7 \times (2 - 7)$
$A = 2,4 - (-2) \times (-6)$ $A = 2,4 - 12$ $A = -9,6$	$B = -5 \times (-1) + 7 \times (-5)$ $B = 5 - 35$ $B = -30$

2) Calculer et donner le résultat sous la forme d'une fraction irréductible : (5,5 points)

2) Calculate at doffice the saturation and the traction in caucitible . (5,5 points)			
$C = \left(\frac{5}{18} - \frac{2}{9}\right) \times \frac{27}{5}$ $C = \left(\frac{5}{18} - \frac{4}{18}\right) \times \frac{27}{5} C = \frac{1}{18} \times \frac{27}{5}$ $C = \frac{3}{10}$	$D = -\frac{10}{15} = -\frac{2}{3}$	20 ⁺ 20 ₉	
$E = \frac{-7}{18} \times \frac{3}{-14} \times (-9)$ $E = -\frac{7 \times 3 \times 9}{2 \times 9 \times 2 \times 7} \boxed{E = -\frac{3}{4}}$	$F = \frac{15}{4} \div \frac{-3}{12}$ $F = -\frac{15}{4} \times \frac{12}{3}$ $F = -15$	$G = \frac{\frac{1}{27}}{\frac{27}{20}}$ $G = \frac{9}{2} \times \frac{20}{27} = \frac{9 \times 2 \times 10}{2 \times 3 \times 9}$ $G = \frac{10}{3}$	

3) Ecrire sous la forme d'une seule puissance, puis donner le résultat sous la forme d'un entier ou d'une fraction irréductible : (4.5 points)

$H = 10^5 \times 10^{-3} = 10^2 \ H = 100$	$J = \frac{5^6}{5^4} = 5^2 = 25$	$L = \frac{(-7)^2}{(-7)^3} = (-7)^{2-3} = (-7)^{-1}$
		$L = -\frac{1}{7}$
$I = 10^3 \times 10^{-5} = 10^{-2}$ $I = \frac{1}{100}$	$K = \frac{(-5)^5}{(-5)^3} = (-5)^{5-3} = (-5)^2$ $K = 5^2 = 25$	$M = ((-2)^3)^2 = (-2)^6$ $M = 2^6 = 64$

4) Calculer et donner le résultat sous la forme d'un entier ou d'une fraction irréductible : (3 points)

	$P = \frac{9 \times 10^5}{4 \times 10^3} = \frac{9}{4} \times 10^{5-3}$	$Q = \left(-\frac{3}{5}\right)^3 \times \left(\frac{5}{3}\right)^5 = -\frac{3^3 \times 5^5}{5^3 \times 3^5}$
N = 9 - 24 $N = -15$	$P = \frac{9 \times 100}{4} = \frac{900}{4} = 225$	$Q = -\frac{5^{5-3}}{3^{5-3}} = -\frac{5^2}{3^2} = -\frac{25}{9}$

5) <u>Donner l'écriture scientifique de :</u>

$$R = 6,25 \times 10^8 \times 4 \times 10^5 = 25 \times 10^3$$

$$R = 2,5 \times 10^{14}$$

$$R = 6,25 \times 10^{8} \times 4 \times 10^{5} = 25 \times 10^{3}$$

$$R = 2,5 \times 10^{14}$$

$$S = \frac{62,5 \times 10^{3}}{4 \times 10^{7}} = 15,625 \times 10^{3-7} = 15,625 \times 10^{-4}$$

$$S = 1,5625 \times 10^{-3}$$

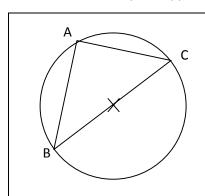
6) Problème:

(1 point)

Un viticulteur fait vieillir son vin dans des barriques avant de le mettre en bouteilles. Une barrique est un tonneau qui contient 225 litres de vin. Combien de bouteilles de $\frac{3}{4}$ L peut-on remplir avec le contenu d'une barrique?

$$225 \div \frac{3}{4} = 225 \times \frac{4}{3} = 75 \times 4 = 300$$

Avec le contenu d'une barrique, on peut remplir 300 bouteilles


ACTIVITES GEOMETRIQUES correction (18 points)

Exercice 1 : 1) a/ Construire un triangle ABC tel que AB = 4,2 cm, BC = 7 cm et AC = 5,6 cm. (0,5 pt)

b/ Démontrer que ABC est un triangle rectangle en A.

2) a/ Sur la figure précédente, Tracer le cercle (\mathcal{C}_1) de diamètre [BC]. (0,5 pt)

b/ Démontrer que A appartient au cercle (\mathcal{C}_1) . (2 pts)

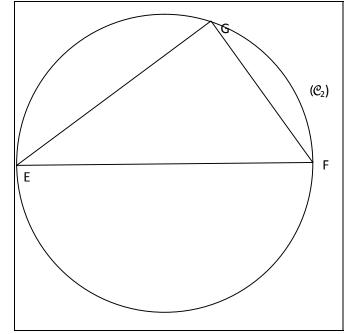
a) [BC] est le plus grand côté $BC^2=7^2=49$

 $AB^2+AC^2=4,2^2+5,6^2=17,64+31,36=49$ Donc BC²=AC²+AB² D'après la réciproque du théorème de Pythagore le triangle ABC est rectangle en A.

b) ABC est un triangle rectangle en A, il est donc inscrit dans le cercle qui a pour diamètre l'hypoténuse.

(2 pts)

Donc ABC est inscrit dans le cercle de diamètre [BC]


Exercice 2: 1) Construire un cercle (\mathcal{C}_2) de rayon 4 cm. Tracer un diamètre [EF] de (\mathcal{C}_2) . (0,5 pt)

Construire un point G de (\mathcal{C}_2) tel que FG = 6 cm. (0,5 pt)

2) Démontrer que EFG est un triangle rectangle en G. (2 pts)

3) Calculer en justifiant : a/ La longueur EF. (0,5 pt)

b/ La longueur GE (valeur exacte puis arrondie au dixième de centimètre). (2,5 pts)

2) G appartient au cercle de diamètre [EF]

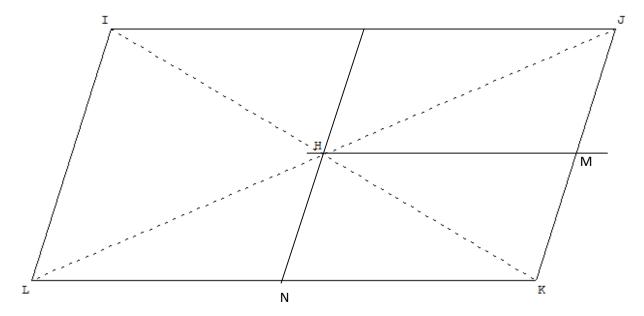
Lorsqu'un triangle EFG est inscrit dans le cercle de diamètre [EF] alors il est rectangle en E.

Donc EFG est rectangle en G.

3) a) [EF] est un diamètre du cercle de rayon 4 cm donc :

 $EF = 2 \times 4 = 8cm$.

b) Dans le triangle EFG rectangle en G, d'après le théorème de Pythagore:


$$8^2 = 6^2 + GF^2$$

$$GF^2 = 64 - 36 = 28$$

 $GF = \sqrt{28}$ cm ≈ 5.3 cm valeur arrondie au dixième de centimètre

Exercice 3 (7 points)

- 1) IJKL est un parallélogramme. [IK] et [JL] se coupent en H. Démontrer que H est le milieu de [IK]. (2 pts)
- 2) a/ Tracer la droite parallèle à (IL) passant par H ; elle coupe [LK] en N (placer N). (1 pt)
 - **b/** Démontrer que N est le milieu de [KL]. (Indication : se placer dans le triangle IKL.) (2 pts)
- 3) Placer M le milieu de [JK]. Démontrer que (HM) // (IJ). (2 pts)

- 1) IJKL est un parallélogramme : les diagonales d'un parallélogramme se coupent en leur milieu donc H est le milieu de [IK]
- 2) Dans le triangle IKL:

H est le milieu de [IK] et (NH) et (IL) sont parallèles.

Dans un triangle la droite qui passe par le milieu d'un côté et qui est parallèle à un deuxième côté passe par le milieu du troisième côté.

Donc N est le milieu de [LK]

3) 3) Dans le triangle JKL:

H est le milieu de [IK] et_M est le milieu de [JK]

Dans un triangle la droite qui passe par le milieu de deux côtés est parallèle au troisième côté.

Donc (HM) et (IJ) sont parallèles.