Académie de Bordeaux 2008 - 2009

Tangentes communes à deux paraboles

Soient f et g les fonctions définies sur **R** par $f(x) = x^2 - 1$ et $g(x) = -x^2 + 2x - 3$.

On appelle respectivement \mathscr{C}_f et \mathscr{C}_g leurs représentations graphiques dans un repère orthonormal $(O; \vec{\imath}, \vec{\gamma})$.

Le but du problème est de déterminer les tangentes communes aux deux courbes \mathscr{C}_f et \mathscr{C}_g .

Partie A - Exploration avec GeoGebra

- 1. Ouvrir GeoGebra
- 2. Définir la fonction f par son expression : $f(x) = x^2 1$.
- 3. Faire de même avec la fonction g.
- 4. Créer un curseur a qui varie entre -5 et 5 avec un pas de 0, 1.
- 5. Définir le point A de \mathscr{C}_f d'abscisse a, c'est-à-dire le point de coordonnées (a, f(a)).
- 6. En déplaçant le curseur, conjecturer le nombre de tangentes communes aux deux courbes.
- 7. Déterminer les valeurs approchées de a correspondant aux tangentes trouvées.

Partie B - Étude mathématique

- 1. On appelle A le point de la courbe \mathscr{C}_f d'abscisse a. Calculer l'équation réduite de la tangente T_a à \mathscr{C}_f au point A.
- 2. Démontrer que les points d'intersection de T_a avec la courbe \mathscr{C}_g ont des abscisses qui sont solutions de l'équation $x^2 + 2x(a-1) a^2 + 2 = 0$.
- 3. Déterminer les valeurs de a pour lesquelles l'équation $x^2 + 2x(a-1) a^2 + 2 = 0$ admet une racine double.
- 4. En déduire alors les équations des deux tangentes communes aux deux courbes.

Partie C - Calculs avec Maxima

- 1. Ouvrir Maxima.
- 2. Définir les deux fonctions f et g. (Syntaxe : f(x) := ...)
- 3. Calculer l'équation réduite de la droite T_a .
- 4. Écrire le système d'équations correspondant à l'intersection de la droite T_a et de la courbe \mathscr{C}_g .
- 5. Résoudre alors la question B.3.
- 6. Déterminer enfin les équations des deux tangentes communes T_1 et T_2 aux deux courbes \mathscr{C}_f et \mathscr{C}_g .