

EVALUATION COMMUNE DE MATHEMATIQUES DES CLASSES DE SECONDE

le 28 mars 2007 2 heures Sujet A

Consignes: Les calculatrices sont autorisées. Vous pouvez traiter les questions dans l'ordre de votre choix. Soignez la présentation de votre devoir.

EXERCICE 1:

On considère la fonction f définie sur **R** par $f(x) = 4 - (x - 1)^2$. Sa courbe C_f est donnée sur la figure 1 de l'annexe.

Partie A : A l'aide du graphique répondre aux questions posées ci-dessous.

Consigne : On prendra soin de répondre sur sa copie tout en laissant les traces des résolutions sur le graphique de la figure 1 de l'annexe.

- 1. Préciser l'image de 2 par f.
- 2. Indiquer une valeur approchée de f(3/2).
- 3. Donner les éventuels antécédents de 0 par f.
- 4. Résoudre graphiquement f(x) > 0.
- 5. En quelle valeur est atteint le maximum de f?
- 6. Proposer le tableau de variation de f.
- 7. Tracer dans le même repère que C_f la courbe représentant la fonction g définie sur \mathbf{R} par : g(x) = 2x 1.
- 8. Résoudre graphiquement dans **R** l'équation et l'inéquation ci-dessous :

a.
$$f(x) = 3$$
 b. $f(x) \le g(x)$.

Partie B : Répondre par le calcul aux questions posées.

- 9. Développer et simplifier $4 (x 1)^2$.
- 10. Factoriser $4 (x 1)^2$.
- 11. En choisissant la forme de f(x) la mieux adaptée :
 - a) Résoudre dans **R** l'équation f(x) = 4.
 - b) Calculer les antécédents de 3 par f.
 - c) Retrouver les résultats de la question 3.
 - d) Résoudre dans **R** l'inéquation f(x) < 0.

EXERCICE 2:

Consignes: Entourer la bonne réponse dans l'une des trois colonnes de droite du tableau. Attention chaque bonne réponse est comptée 0,5 point et chaque réponse fausse -0,25 point; cet exercice ne retirera pas de points aux autres exercices.

$\frac{3a}{8} + \frac{5a}{12} $ est égal à :	$\frac{8a}{20}$	19 <i>a</i> 24	$\frac{15a^2}{96}$
Pour a et b deux réels non nuls, $(a^2 b^{-3})^2$ est égal à :	$(ab)^{-2}$	a^4b^{-6}	a^4b^9
$\sqrt{50} + \sqrt{162}$ est égal à :	$2\sqrt{3}$	$14\sqrt{2}$	$\sqrt{212}$
-3 a + 2 = -9 alors :	a = 11/3	a = -11/3	a = -3/11
Si x < y < -1	$\frac{x+1}{3} > \frac{y+1}{3}$	$x^2 < y^2$	$\frac{2}{x+1} > \frac{2}{y+1}$
Pour $x = -3$ l'expression $-2x^2 + x$ vaut :	-21	-15	15
Pour tout, $x \ne -2$ et $x \ne 2$ l'expression $\frac{-2x + x^2}{x^2 - 4}$ vaut:	$\frac{-2x+1}{3}$	$\frac{-x}{2}$	$\frac{x}{x+2}$
$\frac{4^{-2} \times (2x)^3}{8^{-3} \times (4x)^{-1}} \text{ est égal à :}$	$2^{10} x^4$	$2^{12} x^2$	$2^{12}x^4$

EXERCICE 3:

ABCD est un parallélogramme. Les parties sont indépendantes.

Partie A :

Consigne : La figure est donnée en annexe (figure 2) et sera complétée au fur et à mesure de l'avancement de l'exercice.

- 1. Construire le point *M* défini par : $\overrightarrow{MB} = \frac{1}{2} \overrightarrow{BA}$.
- 2. Soit N le point tel que : $2 \overrightarrow{NA} 3 \overrightarrow{ND} = \overrightarrow{0}$.
 - a) Démontrer que : $\overrightarrow{AN} = 3 \overrightarrow{AD}$.
 - b) Placer le point *N*.
- 3. Démontrer que : $\overrightarrow{CM} = \frac{1}{2} \overrightarrow{AB} \overrightarrow{AD}$.
- 4. Prouver que : $\overrightarrow{CN} = -\overrightarrow{AB} + 2\overrightarrow{AD}$.
- 5. En déduire que les vecteurs \overrightarrow{CM} et \overrightarrow{CN} sont colinéaires. Interpréter ce résultat.

Partie B :

On se place dans un repère orthonormal (O; \vec{i} ; \vec{j}) et on considère les points :

$$A(-2;2)$$
 $B(5;6)$ $C(4;-1)$ $D(-3;-5)$

Consigne : Faire la figure que l'on complètera au fur et à mesure dans le repère fourni en annexe (figure 3).

- 6. Démontrer que le quadrilatère ABCD est un parallélogramme.
- 7. Déterminer par le calcul les coordonnées du point M défini par : $\overrightarrow{MB} = \frac{1}{2}\overrightarrow{BA}$. Vérifier par construction.
- 8. Soit N le point défini par $2\overrightarrow{NA} 3\overrightarrow{ND} = \overrightarrow{0}$. Vérifier que N a pour coordonnées (-5; -19).
- 9. En déduire que les points M, N et C sont alignés.

ANNEXE à rendre	Classe:	Nom a	Duón om a
avec votre copie		Nom:	Prénom:

Figure 1 (exercice 1)

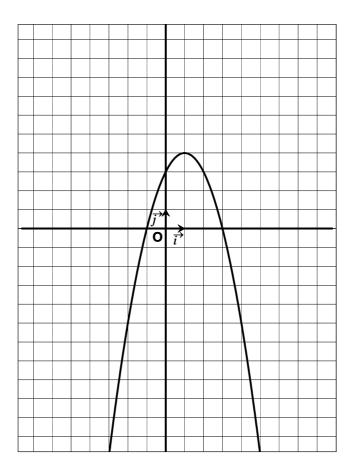
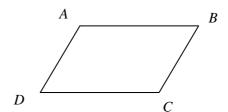
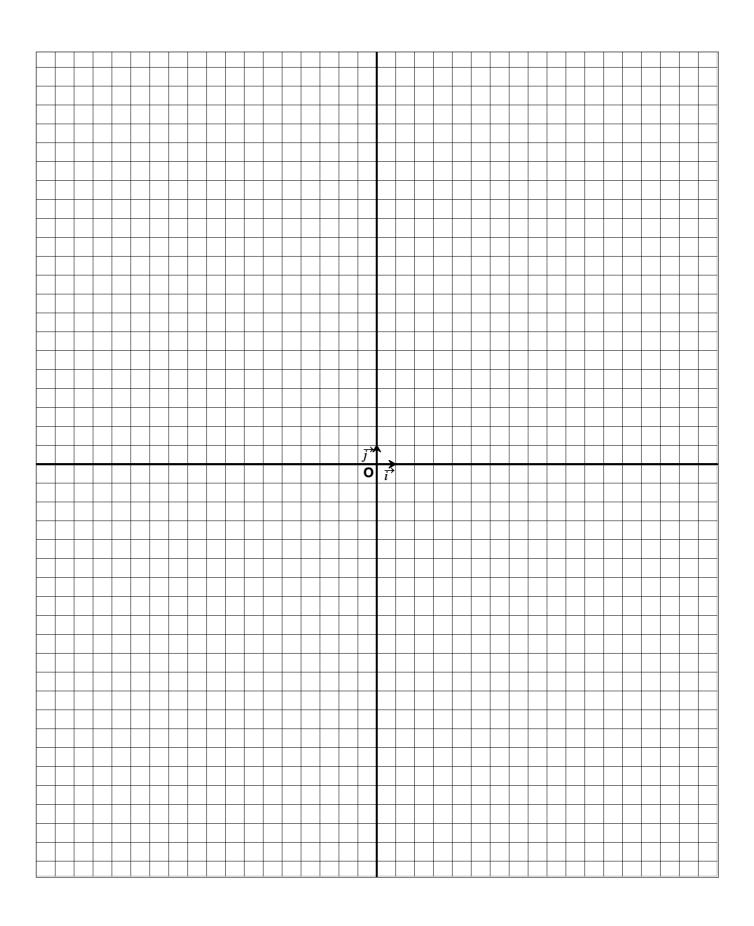




Figure 2 (exercice 3 Partie A)

