Groupement B 1999

Exercice 1

(9 points)

Les quatre questions de cet exercice sont indépendantes.

Une entreprise de matériel pour l'industrie produit des modules constitués de deux types de pièces : P_1 et P_2 .

 1° Une pièce P_1 est considérée comme bonne si sa longueur, en centimètres, est comprise entre 293,5 et 306,5.

On note L la variable aléatoire qui, à chaque pièce P_1 choisie au hasard dans la production d'une journée, associe sa longueur. On suppose que L suit la loi normale de moyenne 300 et d'écart type 3.

Déterminer, à 10^{-2} près, la probabilité qu'une pièce P_1 soit bonne.

2° On note A l'événement : « une pièce P_1 choisie au hasard dans la production des pièces P_1 est défectueuse ».

On note de même B l'événement : « une pièce P_2 choisie au hasard dans la production des pièces P_2 est défectueuse ».

On admet que les probabilités des événements A et B sont P(A) = 0.03 et P(B) = 0.07 et on suppose que ces deux événements sont indépendants.

Un module étant choisi au hasard dans la production, calculer, à 10^{-4} près, la probabilité de chacun des événements suivants :

E₁ : « les deux pièces du module sont défectueuses » ;

 E_2 : « au moins une des deux pièces du module est défectueuse » :

 E_3 : « aucune des deux pièces constituant le module n'est défectueuse ».

3° Dans un important stock de ces modules, on prélève au hasard 10 modules pour vérification. Le stock est assez important pour qu'on puisse assimiler ce prélèvement à un tirage avec remise de 10 modules.

On considère la variable aléatoire X qui, à tout prélèvement de 10 modules, associe le nombre de modules réalisant l'événement E_3 défini au 2° .

On suppose que la probabilité de l'événement E₃ est 0,902.

- a) Expliquer pour quoi X suit une loi binomiale ; déterminer les paramètres de cette loi.
- b) Calculer, à 10^{-3} près, la probabilité que, dans un tel prélèvement, 9 modules au moins réalisent l'événement E_3 .
- 4° Dans cette question on s'intéresse au diamètre des pièces P_2 .

Soit \bar{X} la variable aléatoire qui, à tout échantillon de 60 pièces P_2 prélevées au hasard et avec remise dans la production de la journée considérée, associe la moyenne des diamètres des pièces de cet échantillon. On suppose que \bar{X} suit

la loi normale de moyenne inconnue μ et d'écart type $\frac{\sigma}{\sqrt{60}}$

avec $\sigma = 0.084$.

On mesure le diamètre, exprimé en centimètres, de chacune des 60 pièces P_2 d'un échantillon choisi au hasard et avec remise dans la production d'une journée ; on constate que la

valeur approchée, arrondie à 10^{-3} près de la moyenne \bar{x} de cet échantillon, est $\bar{x} = 4.012$.

- a) À partir des informations portant sur cet échantillon, donner une estimation ponctuelle, à 10^{-3} près, de la moyenne μ du diamètre des pièces P_2 produites pendant cette journée.
- b) Déterminer un intervalle de confiance centré en \overline{x} de la moyenne μ des diamètres des pièces P_2 produites pendant la journée considérée, avec le coefficient de confiance 95%.
- c) On considère l'affirmation suivante : « la moyenne μ est obligatoirement entre 3,991 et 4,033 ».

Peut-on déduire de ce qui précède qu'elle est vraie?

Exercice 2

(11 points)

Les parties A et B peuvent être traitées de façon indépendante.

A. - Résolution d'une équation différentielle

On considère l'équation différentielle (E) :

$$y''-2y'+y=\frac{x^2}{2}-x-1$$

où y désigne une fonction de la variable réelle x définie et deux fois dérivable sur \mathbf{R} , y' la fonction dérivée de y et y'' sa fonction dérivée seconde.

1° Résoudre dans R l'équation différentielle

$$(E'): y''-2y'+y=0.$$

- 2° Déterminer les constantes réelles a, b, c pour que la fonction g, définie sur \mathbf{R} par $g(x) = a x^2 + b x + c$, soit une solution particulière de l'équation (E).
- 3° Déduire du 1° et du 2° l'ensemble des solutions de l'équation différentielle (E).
- $4^\circ\,$ Déterminer la solution $\,f$ de l'équation (E) qui vérifie les conditions initiales :

$$f(0) = 0 \text{ et } f(1) = e + \frac{3}{2}.$$

B. Étude d'une fonction

Soit f et g les deux fonctions de la variable réelle x définies sur ${\bf R}$ par :

$$f(x) = x e^{x} + \frac{x^{2}}{2} + x$$
 et $g(x) = \frac{x^{2}}{2} + x$.

On note \mathcal{C} la courbe représentative de f et \mathcal{T} la courbe représentative de g dans le plan muni du repère orthonormal $(0,\vec{i},\vec{j})$ (unité graphique 2 cm).

1° Déterminer $\lim_{x\to +\infty} f(x)$, $\lim_{x\to -\infty} f(x)$ et

$$\lim \left[f(x) - g(x) \right]$$

Interpréter graphiquement le dernier résultat.

- 2° Étudier sur 3 la position relative des deux courbes \mathcal{C} et \mathcal{G} .
- 3° a) Démontrer que pour tout x de \mathbf{R} :

$$f'(x) = (x+1) (e^x+1)$$
.

b) Étudier les variations de f sur \mathbf{R} .

- 4° a) Compléter le tableau de valeurs figurant en annexe (à rendre avec la copie) ; les valeurs approchées seront arrondies à 10^{-2} près.
- b) Construire la courbe $\mathcal C$ dans le repère $(\mathbf O,\vec i,\vec j)$ sur la feuille annexe (à rendre avec la copie) où figure la courbe $\mathcal G$.
- 5° a) Démontrer, à l'aide d'une intégration par parties, que la valeur exacte, en cm², de l'aire de la partie du plan limitée par la courbe $\mathcal C$, la parabole $\mathcal G$ et les droites d'équations x=-3 et x=-2 est A=4 (-4 $e^{-3}+3$ $e^{-2})$.
- b) Donner une valeur approchée à 10^{-2} près de A.

ANNEXE (à rendre avec la copie)

4° a)

X	-3	-2,5	-2	-1,5	-1	-0,5	0	0,5	1
f(x)									

b)

