PRODUIT À SOMME DE CARRÉS CONSTANTE

Objectif Étudier les variations d'une fonction numérique par transposition dans un cadre

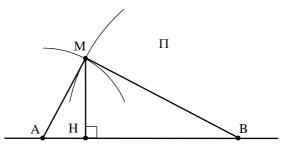
géométrique.

Outils Premières définitions relatives aux fonctions numériques : monotonie sur un

intervalle, extremum.

On se propose d'étudier comment varie le produit de deux nombres réels positifs dont la somme des carrés est constante.

Soit deux nombres réels positifs a et b dont la somme des carrés $a^2 + b^2$ est égale au nombre réel strictement positif k^2 (où k est strictement positif).


En fonction de a, le produit ab s'écrit donc $a \sqrt{k^2 - a^2}$.

Le problème consiste à étudier les variations de la fonction φ définie sur [0 ; k] par : $\varphi(a) = a \sqrt{k^2 - a^2}$

A. Modélisation géométrique

Soit un segment [AB] de longueur k et Π l'un des demi-plans de frontière (AB) ;

Soit M le point d'intersection, situé dans Π , du cercle de centre A et de rayon a, avec le cercle de centre B et de rayon b.

- 1. a. Démontrer que le triangle AMB est rectangle en M.
 - Tracer le demi-cercle (Γ) de diamètre [AB] situé dans Π .
 - b. Soit H le projeté orthogonal de M sur la droite (AB).
 - Démontrer que $MA \times MB = AB \times MH$.
 - D'où la traduction de φ en termes géométriques : φ : AM $\mapsto k \times$ MH.
- 2. Dans le plan rapporté à un repère orthonormal $(O; \vec{i}; \vec{j})$ on désigne par \mathcal{C} la courbe représentative de la fonction ϕ .
 - En prenant pour unité $10 \, \mathrm{cm}$ et pour valeur de k:1, montrer que les résultats établis dans la question précédente permettent de tracer point par point la courbe \mathcal{C} à l'aide d'un compas.
 - Placer une dizaine de points appartenant à la courbe \mathcal{C} .

B. Existence d'un maximum

- 1. Observer que MH admet une valeur maximale pour une position de M que l'on précisera.
- 2. En déduire que la fonction φ admet un maximum pour une valeur de a que l'on précisera.

C. Variations du produit

- 1. M décrivant le demi-cercle (Γ) de A vers B, examiner les variations de MH, et en déduire les variations de $k \times MH$.
- 2. Dresser le tableau des variations de la fonction φ sur l'intervalle [0; k].