UNE ILLUSTRATION GRAPHIQUE DU NOMBRE DÉRIVÉ

Objectif

Illustrer graphiquement la définition du nombre dérivé.

Outils

Définition du nombre dérivé et de la tangente.

Il s'agit de donner un sens mathématique et d'illustrer graphiquement la phrase :

« Pour des abscisses suffisamment proches de x_0 , une courbe \mathcal{C} est aussi proche qu'on le souhaite de sa tangente Δ en M_0 d'abscisse x_0 ».

A. Rappel de cours

Soit f une fonction définie sur un intervalle I non réduit à un point, et x_0 un point de I. Soit $\mathcal C$ sa courbe représentative dans le plan rapporté à un repère $(O;\vec i';\vec j)$ et soit A le point de $\mathcal C$ d'abscisse x_0

Les deux propositions suivantes sont équivalentes, m étant un réel :

- la fonction $h \mapsto \frac{f(x_0 + h) f(x_0)}{h}$ admet m pour limite en 0
- Il existe un intervalle ouvert J contenant 0 et une fonction ε définie sur J telle que, pour tout h élément de J, $f(x_0 + h) = f(x_0) + mh + h \varepsilon(h)$ et $\lim_{h \to 0} \varepsilon(h) = 0$.

Si l'une des deux propositions précédentes est vraie on dit que :

- a. f est dérivable en x_0 et le nombre dérivé de f en x_0 , noté $f'(x_0)$, est égal à m.
- b. \mathcal{C} admet pour tangente au point A la droite Δ passant par A, de coefficient directeur m.

On peut interpréter graphiquement cette dernière définition en disant que : « Pour des abscisses suffisamment proches de x_0 , \mathcal{C} est aussi proche qu'on le souhaite de la tangente Δ ».

B. Exercice

Soit f une fonction définie sur un intervalle I non réduit à un réel, et x_0 un élément de I. Soit $\mathcal C$ sa courbe représentative dans un repère et A le point de $\mathcal C$ d'abscisse x_0 .

On suppose qu'au point A d'abscisse x_0 , $\mathcal C$ admet pour tangente une droite Δ de coefficient directeur m. Il existe donc une fonction ε définie sur I telle que : $f(x_0+h)=f(x_0)+mh+h\,\varepsilon(h)$ avec $\lim_{h\to 0}\varepsilon(h)=0$.

De la nullité de cette limite, on déduit que l'on a pour tout entier naturel non nul $n: -\frac{1}{n} \le \varepsilon(h) \le \frac{1}{n}$, à condition que h soit suffisamment proche de 0. Soit encore : « Pour tout entier naturel non nul n, il existe un réel strictement positif h_n , dépendant de n, tel que : si $-h_n \le h \le h_n$ alors $-\frac{1}{n} \le \varepsilon(h) \le \frac{1}{n}$ » .

1. On pose n = 2. Il existe donc un réel strictement positif h_2 tel que :

si
$$-h_2 \le h \le h_2$$
 alors $-\frac{1}{2} \le \varepsilon(h) \le \frac{1}{2}$.

En déduire un encadrement de $f(x_0 + h)$ sous la condition $0 \le h \le h_2$.

2. Déduire de la question précédente que pour tout réel x appartenant à l'intervalle [x_0 ; $x_0 + h_2$], on a :

$$f(x_0) + \left(m - \frac{1}{2}\right)(x - x_0) \le f(x) \le f(x_0) + \left(m + \frac{1}{2}\right)(x - x_0)$$
. On posera : $x = x_0 + h$.

En déduire que pour des abscisses comprises entre x_0 et $x_0 + h_2$, \mathcal{C} se trouve encadrée par deux droites D_2 et D'_2 passant par A, et dont on précisera les coefficients directeurs.

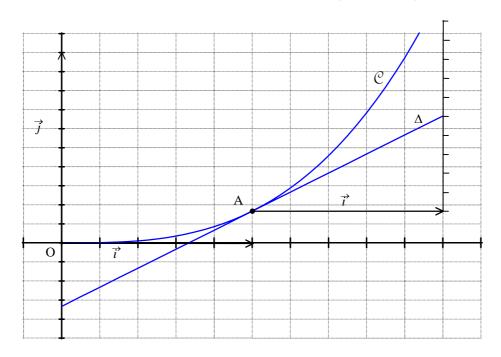
3. En menant des raisonnements analogues, encadrer $f(x_0 + h)$ sous la condition $-h_2 \le h \le 0$, puis encadrer f(x) pour x élément de l'intervalle [$x_0 - h_2$; x_0].

En déduire que les droites D_2 et D'_2 encadrent \mathcal{C} pour toutes les abscisses comprises entre $x_0 - h_2$ et $x_0 + h_2$.

4. Illustration graphique.

Le graphique ci-dessous représente, dans le repère $(O; \vec{i}; \vec{j})$, une fonction f vérifiant, pour $x_0 = 1$, les hypothèses précédentes. La tangente Δ à \mathcal{C} au point d'abscisse 1 est tracée sur ce graphique.

- a. Tracer sur cette figure les droites D2 et D2 définies aux questions précédentes.
- b. Trouver graphiquement quelle valeur on peut prendre pour h_2 .
- c. Repasser en couleur les frontières de la partie du plan comprise entre D_2 et D'_2 d'une part, et d'autre part les droites parallèles à (Oy) d'équations : $x = x_0 h_2$ et $x = x_0 + h_2$.



- 5. On pose n=3. Il existe donc un réel strictement positif h_2 tel que, si $-h_3 \le h \le h_3$, alors $-\frac{1}{3} \le \varepsilon(h) \le \frac{1}{3}$.
 - a. En déduire un encadrement de $f(x_0 + h)$ sous la condition $0 \le h \le h_3$.

En posant $x = x_0 + h$, en déduire un encadrement de f(x) pour x compris entre x_0 et $x_0 + h_3$.

En déduire que pour des abscisses comprises entre x_0 et $x_0 + h_3$, \mathcal{C} se trouve encadrée par deux droites D_3 et D_3 passant par A, et dont on précisera les coefficients directeurs.

- b. Démontrer que les droites D_3 et D'_3 encadrent $\mathcal C$ pour toutes les abscisses comprises entre x_0-h_2 et x_0+h_2
- c. Tracer sur cette figure les droites D_3 et D_3' .

Trouver graphiquement quelle valeur on peut prendre pour h_3 .

Repasser, avec une nouvelle couleur, les frontières de la partie du plan comprise entre D_3 et D_3' d'une part, et d'autre part les droites d'équations : $x = x_0 - h_3$ et $x = x_0 + h_3$.

6. a. On pose cette fois n = 5, et on ne demande pas de démonstration.

Tracer les droites D_5 et D_5 sur le graphique. Quelle valeur peut-on prendre pour h_5 ?

Repasser d'une nouvelle couleur les frontières de la partie du plan comprise entre D_5 et D_5 d'une part, et d'autre part les droites d'équations : $x = x_0 - h_5$ et $x = x_0 + h_5$.

b. Procéder de même pour n = 10.

C. Conclusion

En suivant le même schéma de démonstration, on peut établir le résultat suivant :

Soit D et D' deux droites passant par A encadrant la tangente Δ , et de coefficients directeurs aussi proches que l'on veut de celui de Δ . Alors, pour des abscisses suffisamment proches de x_0 , $\mathcal C$ se trouve entre D et D'.

C'est en ce sens qu'on peut dire : « pour des abscisses suffisamment proche de x_0 , \mathcal{C} est aussi proche qu'on le souhaite de la tangente Δ ».

DOCUMENT PROFESSEUR

